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Abstract. The goal of this work is to develop a practical method for simulating low-signal kinetic (and small-scale) gaseous
flows. These flows have recently received renewed attention in connection with the design, manufacturing, and optimization
of MEMS/NEMS devices operating in gaseous environments; they are typically described using the Boltzmann equation
which is most efficiently solved using the direct simulationMonte Carlo (DSMC) method. DSMC is a simple and versatile
simulation method which is very efficient in producing samples of the single particle distribution function used for estimating
hydrodynamic properties. Unfortunately, in the case of low-speed flows the computational cost associated with reducing
the statistical uncertainty of simulation outputs becomesoverwhelming. We will present a variance reduction approach
for reducing the statistical uncertainty associated with low-signal flows making their simulation not only possible but also
efficient. Variance reduction is achieved using a control variate approach based on the observation that low-signal flows are
typically close to an equilibrium state. As with previous variance reduction methods, significant variance reduction is achieved
making the simulation of arbitrarily small deviations fromequilibrium possible. However, in contrast to previous variance-
reduction methods, the method proposed, which we will referto as the VRDSMC method, is able to reduce the variance with
virtually no modification to the standard DSMC algorithm. This is achieved by introducing an auxiliary equilibrium simulation
which, via an importance weight formulation, uses the same particle data as the non-equilibrium (DSMC) calculation;
subtracting the equilibrium from the non-equilibrium hydrodynamic fields drastically reduces the statistical uncertainty of the
latter because the two fields are correlated. By retaining the basic DSMC formulation, in contrast to previous approaches, the
VRDSMC approach combines ease of implementation with computational efficiency and the ability to simulate all molecular
interaction models available within the DSMC formulation.The work presented here represents a substantial improvement
from the work presented in the previous symposium in two important ways. First, the kernel density estimation stabilization
scheme has been further refined to allow substantially less bias without dramatically affecting stability. The second major
improvement is the use of local cell reference states when performing particle collisions which results in a substantial reduction
in the number of particles per cell required for stability, especially for small Knudsen numbers. Our validation tests show that
the proposed VRDSMC method provides considerable variancereduction for only a small increase in computational cost and
approximation error compared to equivalent DSMC simulations. In other words, by addressing the major weakness associated
with DSMC, VRDSMC is well suited to the solution of low-signal kinetic problems of practical interest.
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INTRODUCTION

The objective of this work is the development of efficient simulation tools for modeling low-signal, small-scale gaseous
flows. In this paper, we build on the framework that we previously introduced [3, 1, 2] towards a method that is able to
practically resolve low-signal flows of engineering interest. The method (which we will refer to as VRDSMC) is based
on the general idea of variance reduction [8] and the observation [5] that the statistical uncertainty of non-equilibrium
hydrodynamic fields can be significantly reduced by formulating the desired result as the difference between the non-
equilibrium DSMC [4] simulation of interest and acorrelatedsimulation of equilibrium.

The problem of rigorously simulating kinetic flows that are close to equilibrium is of practical value in the design and
analysis of MEMS/NEMS applications [12]. DSMC is the most commonly used method for simulating kinetic flows
but requires an impractically large number of samples to resolve flows that are close to equilibrium [18]. Boltzmann
solution methods that can treat low-signal flows can be broadly grouped into PDE-type and particle-based approaches.
PDE-type approaches attempt to numerically solve the governing equation [16, 14]. Particle methods, on the other
hand, simulate the problem of interest using particles. Themost complete particle method for low-signal flows until
now has been LVDSMC [9, 10, 13] although other approaches [19, 11] have also been proposed.

LVDSMC is a deviational particle method that uses the Hilbert form of the hard-sphere collision integral to stabilize
the particle simulation. Other researchers [6, 20] have been able to extend LVDSMC to other collision models to allow,
for example, the simulation of VHS gases [6]. The method discussed in this paper is an alternative low-signal kinetic
simulation method that is substantially simpler than LVDSMC and easier to extend to more complex gas models.
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Figure 1. Left: a conceptual illustration of the VRDMSC approach to variance reduction. Right: the updated version of VRDSMC
used in this paper and [1, 2].

In this paper we will present important updates on previous work [3, 1, 2] by introducing two important pieces
that make VRDSMC substantially more robust. First, we will introduce the use of local reference states to reduce
simulation bias and, secondly, we will present a more general method of deriving weight update rules. This updated
version of VRDSMC still leaves DSMCunaltered, yet is able to practically resolve arbitrarily slow flows for a wide
range of Knudsen numbers, making it attractive for many applications.

AN OVERVIEW OF VRDSMC

As introduced previously [1, 2, 3] and illustrated in Figure1, VRDSMC achieves variance reduction with minimal
modification to the original DSMC algorithm. The left side ofthe Figure shows the working principle: a variance
reduced estimate of the property of interestR̄VR is produced by replacing the equilibrium component of the property
of interestR̄eq (measured for the distributionfeq(c)) with its expected value (〈R〉eq). Specifically, in VRDSMC the
equilibrium property estimator is calculated using particle probability weight ratiosW that describe the relative
probability of an event happening in the equilibrium simulation (sampling distributionfeq) given that it happened in
the non-equilibrium simulation (samplingf ). Specifically, for each particlei we haveWi = feq(ci)/ f (ci). If we takeN

samples of a propertyR the resulting estimator̄RVR = R̄− R̄eq+ 〈R〉eq= 1
N

N
∑

i=1
(1−Wi)Ri + 〈R〉eq has substantially less

variance than the regular DSMC estimator (R̄= 1
N

N
∑

i=1
Ri) as long as the equilibrium and non-equilibrium simulations

are correlated andWi −1 is small.
In order for the variance-reduced simulation to proceed, weneed to devise a method of updating the probability

ratio weights as the simulation proceeds. It was previouslyshown [3, 2] that starting directly from the collision term
of the Boltzmann equation
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we can find that for collision candidatesi and j the weight update rules are
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whereĉr = cr/MX is the collision probability for some appropriately chosenupper boundMX. An alternative approach
for deriving these evolution rules is discussed below.

As discussed previously, these relations are correct on average but produce numerically unstable simulations in the
collision-dominated limit, a limitation that we were able to remove by using Kernel Density Estimation(KDE). We
have found that weights reconstructed using KDE with kernels of widthεc0 = ε

√

2kT0/mproduce stable calculations
but introduce bias in the simulation that is proportional toε. From our experimentation we have found that applying
the KDE step only to particles that are accepted for scattering provides the best trade-off between stability and bias.

In the end, due to the stability-bias tradeoff caused by KDE,stableandaccurate simulations may require a larger
number of particles in a cell (Ncell) than regular DSMC asKn→ 0; hereKn is the Knudsen number, defined as the ratio
of the molecular mean free path to the characteristic flow lengthscale. The final VRDSMC algorithm is summarized
in the flow diagram on the right of Figure 1, including the change of reference state that is discussed below.

Bias Reduction using Local Reference States

Although it seems to be impossible to eliminate the bias introduced by KDE [17], this bias can be substantially
reduced by judiciously choosing how the reconstruction is applied. Specifically, we found that induced bias can be
substantially reduced by performing the collision step with weights referred to a local equilibrium reference state
( fMB,loc) instead of a global reference equilibrium state (feq,0) that is common across the computational domain.

Our approach is to temporarily modify the reference equilibrium state into a local (cell-based) Maxwell-Boltzmann
distribution since the reminder of the formulation (e.g. boundary conditions and advection) is most easily dealt with
based on the global state. To do this for each particlei, we can use the relationsW′

i = γiWi andW′
i = γ−1

i Wi to

switch between thefMB,loc and feq,0 reference states whereγi =
fMB,loc(ci)

feq,0(ci)
. The parameters that specifyfMB,loc(c) are

determined by the instantaneously measured density, velocity and temperature of each cell.

AN ALTERNATIVE APPROACH TO WEIGHT UPDATE RULES

We explore here an alternative approach to deriving the weight update rules based on conditional probability argu-
ments. This approach is more general and allows the derivation of rules for other collision models and boundary
conditions more directly and intuitively. To proceed, let us consider the simulation of two homogeneous systems with
Ncell simulation particles;both start from the same initial conditions and obey the following dynamics:

1. Simulation A: each simulation particle representsNE f f physical particles. After each timestep, the velocity of
every particlei is updated fromci to c′i with probabilityPA:ci→c′i

and in general,c′i may or may not be identical to
ci .

2. Simulation B: In contrast to Simulation A, each particlei representsWiNE f f physical particles andPB:ci→c′i
is

defined similarly toPA:ci→c′i
, but captures the transition probabilities for SimulationB.

As discussed above, our variance reduction procedure requires that both simulations to stay correlated at all times. This
can be done by integrating both simulations “synchronously”; updating the velocities of both simulations according
to the transition probabilities of SimulationA but using weights that allow the representation of Simulation B.
Consequently, at timet ′ the weightsW′

i are modified to ensure that they are still representing Simulation B. Given there
areNci particles with velocityci in Simulation A at time=t, there will beNE f f PA:ci→c′i

Nci actual particles landing atc′i
at time=t ′. Likewise, in Simulation B the number of actual particles landing atc′i should beWiNE f f PB:ci→c′i

Nci when

time=t ′. By takingWi
′ = Wi

PB:ci→ci
′

PA:ci→ci
′ we can keep both simulations in-step since this relation satisfies both Simulations

A and Bon average. This relation can be used as the primary relation for findingweight update rules used in a variety
of physical phenomena, such as advection, particle collisions, wall interactions, etc. For the purposes of VRDSMC,
identifying the non-equilibrium simulation with Simulation A and the equilibrium simulation with Simulation B yields

Wi
′ = Wi

Peq:ci→ci
′

Pci→ci
′

(2)



where Pci→c′i
and Peq:ci→c′i

are the transition probabilities fromci to c′i for the non-equilibrium and equilibrium
simulations, respectively. Particle-particle collisions are discussed in the next section; a discussion of advection and
particle-wall interactions can be found in [2, 1].

Collision Transition Probabilities for Hard-Sphere Collisions

The collision step in DSMC is based on an acceptance-rejection procedure that selects a certain number of candidate
particle pairs and either accepts them for scattering with probability Pci→ci = ĉr or rejects them without modifying
their velocities [4]. The scattering probability of the equilibrium simulation can be found by consideringNE f fWi real
particles of classci in a cell andNE f fWj particles of classc j in the same cell. The average number of collisions between
the two classes isN2

E f fWiWjcrσ ∆t
2V and soeach simulation particleof classci will have on averageNE f fWjcrσ ∆t

2V

collisions. Keeping the same number of collision candidates as DSMC requiresNE f f Ncell(Ncell−1)MXσ ∆t
2V candidates

to sample the particle-particle collisions between all classes, and thus requires that the collision probability be
Peq:ci→c′i

=
Wj cr
MX with MX = max

i, j∈cell
Wicr . Using this and (2), the update weight rule for accepted particles in hard-sphere

VRDSMC is

Wi
′ = Wi

Peq:ci→c′i
Pci→c′i

= WiWj (3)

while for the rejected particles

Wi
′ = Wi

Peq:ci→c′i=ci

Pci→c′i=ci

= Wi

1−Peq:ci→c′i
1−Pci→c′i

= Wi
1−Wjcr/MX

1−cr/MX
(4)

as shown above.
The key advantage of this formulation compared to the previously presented one is that it can be extended to many

other collision models since it does not explicitly use the analytical form of the hard-sphere collision integral.

VRDSMC ALGORITHM

In summary, the VRDSMC algorithm can be summarized as follows:

1. Advection Step: positions of particles are updated normally. ie.xi → xi + ∆tci . Wall interactions are handled
identically as DSMC but with particle weights assigned based on the reference global equilibrium distribution

Wi =
feq,0(ci)

f (ci)
.

2. Weight Adjustment to local Reference State: weights are updated so that they refer to the local reference
distribution fMB,loc.

3. Collision Step: candidates are chosen and accepted in a manner that is identical to DSMC but for
(a) Accepted particles: KDE is used to estimate the local particles weightsŴi andŴj before scattering, weights

are then updated using (3).
(b) Rejected particles: weights are updated according to (4) with particle velocities kept unchanged.

4. Weight Adjustment to Global Reference State: reverse of Step 2.
5. Sampling: sample cell properties using the modified variance reduced estimators [2, 1].

VRDSMC VERIFICATION AND PERFORMANCE

VRDSMC has been extensively verified over a large number of 1Dkinetic flow problems in both transient and steady
state cases and shown to be able to resolve arbitrarily low-signal flows over a large range of Knudsen numbers [2, 1].
As discussed before, more stable calculations require a larger number of particles per cell (Ncell) for a fixed KDE
averaging radiusε; at the same time, bias only disappears asε → 0. The introduction of local reference states can
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Figure 2. VRDSMC simulation of 1D Couette flow (solid line) compared toDSMC (points). The difference is less than 1% with
3,000 particles per cell; in contrast,∼ 50,000 particles per cell are needed if we use a single global reference state.

substantiallyreduceNcell required for a stable and accurate calculation, especiallyfor small Kn, as illustrated in
Figure 2 for the case of a 1D Couette flow withKn = 0.1.

Figure 3 shows excellent agreement between VRDSMC and DSMC for the case of a transient simulation of a 1D
gas layer whose boundaries’ temperatures are suddenly changed.

SUMMARY AND CONCLUSIONS

In this paper we discussed VRDSMC, a practical variance-reduced method that is based on DSMC and is able to
resolve arbitrary low-signal kinetic flows. There are threemain ingredients to this method: The first is the use of
particle weights to relate the DSMC simulation to a correlated simulation of equilibrium that is used to produce a
variance reduced property estimator. The second ingredient is the use of KDE to stabilize the particle weights making it
practical to use the method for steady state problems. The final ingredient of the method is the use of local equilibrium
reference states which dramatically improves the method’sefficiency, especially at low Knudsen numbers. We also
presented an alternative approach to weight update rules that allows us to extend the method in a simple manner to
more complex boundary conditions and collision models [1, 21].

Since the method is directly based on DSMC, we expect it to be accurate for a wide range of flow configurations,
including transient flows, different initial conditions, etc. This has been confirmed by our tests in which VRDSMC has
been shown to be able to reproduce DSMC results within engineering accuracy without substantially changing how
the method scales with the number of particles. In fact, the only time VRDSMC may have a disadvantage compared
to other VR methods is in extremely low Knudsen number flows where the largeNcell for a large number of cells
may be a limitation. In conclusion, we recommend VRDSMC (along with LVDSMC) be considered seriously for any
engineering-type, low-signal calculation.
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Figure 3. Transient results for an impulsive boundary temperature change problem forKn = 1.0. Solid lines denote VRDSMC
results withNcell = 500; DSMC results are shown in dots. The snapshots shown correspond tot = {5,10,40}∆t where∆t =
1
24
√

πλ/(2c0).
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