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Abstract. The goal of this work is to develop a practical method for dating low-signal kinetic (and small-scale) gaseous
flows. These flows have recently received renewed attentionrinection with the design, manufacturing, and optinorat
of MEMS/NEMS devices operating in gaseous environmentsy #re typically described using the Boltzmann equation
which is most efficiently solved using the direct simulatidonte Carlo (DSMC) method. DSMC is a simple and versatile
simulation method which is very efficient in producing saespbf the single particle distribution function used foirasting
hydrodynamic properties. Unfortunately, in the case of-&peed flows the computational cost associated with regucin
the statistical uncertainty of simulation outputs becoroesrwhelming. We will present a variance reduction appnoac
for reducing the statistical uncertainty associated woth-signal flows making their simulation not only possible biso
efficient. Variance reduction is achieved using a controlata approach based on the observation that low-signakfame
typically close to an equilibrium state. As with previousigace reduction methods, significant variance reduct@tchieved
making the simulation of arbitrarily small deviations fraquilibrium possible. However, in contrast to previousiaace-
reduction methods, the method proposed, which we will refers the VRDSMC method, is able to reduce the variance with
virtually no modification to the standard DSMC algorithmigis achieved by introducing an auxiliary equilibrium siiation
which, via an importance weight formulation, uses the samigle data as the non-equilibrium (DSMC) calculation;
subtracting the equilibrium from the non-equilibrium hgdynamic fields drastically reduces the statistical uadety of the
latter because the two fields are correlated. By retainiadpttsic DSMC formulation, in contrast to previous approactie
VRDSMC approach combines ease of implementation with caatipmal efficiency and the ability to simulate all molegula
interaction models available within the DSMC formulatidrne work presented here represents a substantial imprageme
from the work presented in the previous symposium in two irgya ways. First, the kernel density estimation stabliiora
scheme has been further refined to allow substantially lessvbithout dramatically affecting stability. The seconajor
improvement is the use of local cell reference states whepgpeing particle collisions which results in a substahtigluction

in the number of particles per cell required for stabilitgpecially for small Knudsen numbers. Our validation tektssthat

the proposed VRDSMC method provides considerable varigguigction for only a small increase in computational cost an
approximation error compared to equivalent DSMC simulketidn other words, by addressing the major weakness agstcia
with DSMC, VRDSMC is well suited to the solution of low-sigridnetic problems of practical interest.
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INTRODUCTION

The objective of this work is the development of efficientsiation tools for modeling low-signal, small-scale gasgou
flows. In this paper, we build on the framework that we preslgintroduced [3, 1, 2] towards a method that is able to
practically resolve low-signal flows of engineering in&trd he method (which we will refer to as VRDSMC) is based
on the general idea of variance reduction [8] and the ob#ervgb] that the statistical uncertainty of non-equililom
hydrodynamic fields can be significantly reduced by formngathe desired result as the difference between the non-
equilibrium DSMC [4] simulation of interest andcarrelatedsimulation of equilibrium.

The problem of rigorously simulating kinetic flows that alese to equilibrium is of practical value in the design and
analysis of MEMS/NEMS applications [12]. DSMC is the mostreoonly used method for simulating kinetic flows
but requires an impractically large number of samples tolvesflows that are close to equilibrium [18]. Boltzmann
solution methods that can treat low-signal flows can be Hyagduped into PDE-type and particle-based approaches.
PDE-type approaches attempt to numerically solve the gavgrequation [16, 14]. Particle methods, on the other
hand, simulate the problem of interest using particles. st complete particle method for low-signal flows until
now has been LVDSMC [9, 10, 13] although other approachesl[1phave also been proposed.

LVDSMC is a deviational particle method that uses the Hilliemm of the hard-sphere collision integral to stabilize
the particle simulation. Other researchers [6, 20] have béée to extend LVDSMC to other collision models to allow,
for example, the simulation of VHS gases [6]. The methodudised in this paper is an alternative low-signal kinetic
simulation method that is substantially simpler than LVDSIsind easier to extend to more complex gas models.
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Figurel. Left: a conceptualillustration of the VRDMSC approach tdamce reduction. Right: the updated version of VRDSMC
used in this paper and [1, 2].

In this paper we will present important updates on previooskW3, 1, 2] by introducing two important pieces
that make VRDSMC substantially more robust. First, we wittdduce the use of local reference states to reduce
simulation bias and, secondly, we will present a more gémeeshod of deriving weight update rules. This updated
version of VRDSMC still leaves DSM@naltered yet is able to practically resolve arbitrarily slow flows fowide
range of Knudsen numbers, making it attractive for manyiaafibns.

AN OVERVIEW OF VRDSMC

As introduced previously [1, 2, 3] and illustrated in FigureVRDSMC achieves variance reduction with minimal
modification to the original DSMC algorithm. The left side the Figure shows the working principle: a variance
reduced estimate of the property of interBgk is produced by replacing the equilibrium component of thepprty

of interestReq (Measured for the distributiofyq(c)) with its expected value(R),). Specifically, in VRDSMC the
equilibrium property estimator is calculated using pé#etiprobability weight ratiodaV that describe the relative
probability of an event happening in the equilibrium sintisia (sampling distributiorfeg) given that it happened in
the non-equilibrium simulation (samplirfg. Specifically, for each particiewe haveM = feq(ci)/ f(ci). If we takeN

_ — — N
samples of a properfg the resulting estimatd®/r = R— Req+ (R)eq = L iZl(l —W)R + (R)¢q has substantially less

_ N
variance than the regular DSMC estimatBr= % Y R) as long as the equilibrium and non-equilibrium simulasion
i=1

are correlated andf — 1 is small.

In order for the variance-reduced simulation to proceedneed to devise a method of updating the probability
ratio weights as the simulation proceeds. It was previosistyvn [3, 2] that starting directly from the collision term
of the Boltzmann equation
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we can find that for collision candidateand j the weight update rules are
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wherec; = ¢; /MX s the collision probability for some appropriately chos@per bound/X. An alternative approach
for deriving these evolution rules is discussed below.

As discussed previously, these relations are correct amgeddut produce numerically unstable simulations in the
collision-dominated limit, a limitation that we were abteremove by using Kernel Density Estimation(KDE). We
have found that weights reconstructed using KDE with kerpéWidthecy = £/ 2kTy/mproduce stable calculations
but introduce bias in the simulation that is proportionat td-rom our experimentation we have found that applying
the KDE step only to particles that are accepted for scatigiovides the best trade-off between stability and bias.

In the end, due to the stability-bias tradeoff caused by K&&bleand accurate simulations may require a larger
number of particles in a celNg)) than regular DSMC akkn — 0; hereKnis the Knudsen number, defined as the ratio
of the molecular mean free path to the characteristic flowtlescale. The final VRDSMC algorithm is summarized
in the flow diagram on the right of Figure 1, including the caiof reference state that is discussed below.

Bias Reduction using L ocal Reference States

Although it seems to be impossible to eliminate the biaihiced by KDE [17], this bias can be substantially
reduced by judiciously choosing how the reconstructionpigliad. Specifically, we found that induced bias can be
substantially reduced by performing the collision stephwiteights referred to a local equilibrium reference state
(fme.loc) instead of a global reference equilibrium stakg,) that is common across the computational domain.

Our approach is to temporarily modify the reference equiiliin state into a local (cell-based) Maxwell-Boltzmann
distribution since the reminder of the formulation (e.gubdary conditions and advection) is most easily dealt with
based on the global state. To do this for each pariiclee can use the relatio®’ = yW andW' = y W to

switch between théyg |oc and feqo reference states wheye= f“f":(;'gfc(g). The parameters that specifyig |oc(C) are

determined by the instantaneously measured density,iteeboad temperature of each cell.

AN ALTERNATIVE APPROACH TO WEIGHT UPDATE RULES

We explore here an alternative approach to deriving the wteigdate rules based on conditional probability argu-
ments. This approach is more general and allows the demvaii rules for other collision models and boundary
conditions more directly and intuitively. To proceed, Istaonsider the simulation of two homogeneous systems with
Ncenl Simulation particleshoth start from the same initial conditions and obey the follagvitynamics:

1. Simulation A: each simulation particle represeNts: physical particles. After each timestep, the velocity of

every particlé is updated front; to ¢ with probabilityPA:cﬁcf and in general may or may not be identical to

GC.

2. Simulation B: In contrast to Simulation A, each particiepresent®{Ng ¢+ physical particles anG’B:qHC{ is
defined similarly thA:chi’v but captures the transition probabilities for Simulatin

As discussed above, our variance reduction procedureresgphiat both simulations to stay correlated at all timess Th
can be done by integrating both simulations “synchrondusiydating the velocities of both simulations according
to the transition probabilities of SimulatioA but using weights that allow the representation of Simarats.
Consequently, at timi the weightd\’ are modified to ensure that they are still representing Sitianl B. Given there
areN, particles with velocity; in Simulation A at time#, there will beNEffPA:Cﬁcf N actual particles landing af

at timewt'. Likewise, in Simulation B the number of actual particlesdiag atc] should be\/\/{NEffPB;(HqNCi when

. ) Pa.c . : i . . o . .

time=t’. By takingW’ = V\/{% we can keep both simulations in-step since this relatiosfge both Simulations
:Cj—G

A and Bon averageThis relation can be used as the primary relation for finaiegght update rules used in a variety

of physical phenomena, such as advection, particle amfigsiwall interactions, etc. For the purposes of VRDSMC,

identifying the non-equilibrium simulation with Simulati A and the equilibrium simulation with Simulation B yields
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whereR; .o and Ry, ¢ are the transition probabilities from to ¢/ for the non-equilibrium and equilibrium

simulations, respectively. Particle-particle collistoare discussed in the next section; a discussion of adveatid
particle-wall interactions can be foundin [2, 1].

Collision Transition Probabilities for Hard-Sphere Collisions

The collision step in DSMC is based on an acceptance-refeptiocedure that selects a certain number of candidate
particle pairs and either accepts them for scattering wittbability P; ., = ¢ or rejects them without modifying
their velocities [4]. The scattering probability of the ddprium simulation can be found by considerihg s {\W real
particles of class; in a cell and\g 1 fWj; particles of class; in the same cell. The average number of collisions between

the two classes iBIéHV\/.V\/j chZA—\t/ and soeach simulation particlef classc; will have on averagd\g ¢ tW, chZA—\t/

collisions. Keeping the same number of collision candislaseDSMC requireSg t £ Neeli (Neell — 1)MX02A—\t, candidates

to sample the particle-particle collisions between allssts, and thus requires that the collision probability be
Wicr

Peqcﬁcif = wx With MX = _max”V\/.cr. Using this and (2), the update weight rule for acceptedgastin hard-sphere

i,jece
VRDSMC is b

VVII —W eqei—¢f _ VV|VVJ (3)
PCiﬂCi/
while for the rejected particles
Pego d=c 1-PFege—c 1—-Wc /MX
VV|/=VV| eqc—¢/=C W eqe—¢f W JCr/ 4)
Pe—d=c 1-Ry g 1-c¢/MX

as shown above.
The key advantage of this formulation compared to the preshiopresented one is that it can be extended to many
other collision models since it does not explicitly use thalgtical form of the hard-sphere collision integral.

VRDSMC ALGORITHM

In summary, the VRDSMC algorithm can be summarized as falow

1. Advection Step: positions of particles are updated normally.e— X + Atc;. Wall interactions are handled
identically as DSMC but with particle weights assigned blage the reference global equilibrium distribution
W=

2. Weight Adjustment to local Reference State: weights are updated so that they refer to the local reference
distribution fpg joc.

3. Collision Step: candidates are chosen and accepted in a manner that icaleatbSMC but for

(a) Accepted particles: KDE is used to estimate the localges weightait andVVj before scattering, weights
are then updated using (3).
(b) Rejected particles: weights are updated according)twith particle velocities kept unchanged.
4. Weight Adjustment to Global Reference State: reverse of Step 2.

5. Sampling: sample cell properties using the modified variance redustahators [2, 1].

VRDSMC VERIFICATION AND PERFORMANCE

VRDSMC has been extensively verified over a large number okibBtic flow problems in both transient and steady
state cases and shown to be able to resolve arbitrarily igmakflows over a large range of Knudsen numbers [2, 1].
As discussed before, more stable calculations requiregedarumber of particles per celNfg) for a fixed KDE

averaging radiug; at the same time, bias only disappearsas 0. The introduction of local reference states can
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Figure2. VRDSMC simulation of 1D Couette flow (solid line) comparedx8MC (points). The difference is less than 1% with
3,000 particles per cell; in contrast, 50,000 particles per cell are needed if we use a single globateate state.

substantiallyreduceNcg required for a stable and accurate calculation, espedailymall Kn, as illustrated in
Figure 2 for the case of a 1D Couette flow wi¢m = 0.1.

Figure 3 shows excellent agreement between VRDSMC and DSW@&é case of a transient simulation of a 1D
gas layer whose boundaries’ temperatures are suddenlgetian

SUMMARY AND CONCLUSIONS

In this paper we discussed VRDSMC, a practical varianceged method that is based on DSMC and is able to
resolve arbitrary low-signal kinetic flows. There are thmeain ingredients to this method: The first is the use of
particle weights to relate the DSMC simulation to a coredasimulation of equilibrium that is used to produce a
variance reduced property estimator. The second ingreiditire use of KDE to stabilize the particle weights making it
practical to use the method for steady state problems. Takiffigredient of the method is the use of local equilibrium
reference states which dramatically improves the metheffisiency, especially at low Knudsen numbers. We also
presented an alternative approach to weight update ru¢safows us to extend the method in a simple manner to
more complex boundary conditions and collision models {1, 2

Since the method is directly based on DSMC, we expect it tockerate for a wide range of flow configurations,
including transient flows, different initial conditiondceThis has been confirmed by our tests in which VRDSMC has
been shown to be able to reproduce DSMC results within eegimg accuracy without substantially changing how
the method scales with the number of particles. In fact, thlg tme VRDSMC may have a disadvantage compared
to other VR methods is in extremely low Knudsen number flowgnstthe largeN.e for a large number of cells
may be a limitation. In conclusion, we recommend VRDSMC ifglavith LVDSMC) be considered seriously for any
engineering-type, low-signal calculation.
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Figure 3. Transient results for an impulsive boundary temperatuesgh problem fokKn = 1.0. Solid lines denote VRDSMC
results withNge = 500; DSMC results are shown in dots. The snapshots showespand tat = {5,10,40}At where At =

AV /(2¢0).
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